Dengue Vaccines: current status of development

ISID-NTD 2011 International Meeting, Boston
Satellite Symposium on Dengue Control, 10 July 2011

Pem Namgyal
WHO/IVB/IVR
Summary of dengue candidate vaccines in development

Update on the status of development and some of the characteristics of the Live attenuated tetravalent, ChimeraVax

Some challenges to the future use of the tetravalent live attenuated vaccines

Looking ahead-what WHO is doing to prepare for the introduction of dengue vaccine
"We can make this the decade in which we take full advantage of the technology of vaccines. By doing that, we will build an entirely new future based on the understanding that global health is the cornerstone of global prosperity"
Challenges to the development of dengue vaccines

- No animal model that reproduces human disease

- There is no known true correlate of protection
 - Neutralizing antibody appears to be an indicator of protection, however-
 - Absolute titer for protection is not known, and titer can vary between strains within a serotype and between serotypes

- The need for developing balanced immune response by the four serotypes whereby a protective immune response is induced against all four viruses simultaneously
Challenges to the development of dengue vaccines

- Life-long homotypic immunity but only short-term cross-protective immunity
- Immune enhancement, including antibody dependent enhancement
- Possibility of viral interference with a tetravalent vaccine (live)
<table>
<thead>
<tr>
<th>Approach</th>
<th>Developer</th>
<th>DENV antigens</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Live attenuated, recombinant YF17D/DEN chimeric</td>
<td>Sanofi Pasteur</td>
<td>prM/E</td>
<td>Phase 3 tetravalent</td>
</tr>
<tr>
<td>Live attenuated</td>
<td>GSK/WRAIR</td>
<td>all DENV antigens</td>
<td>Phase 2 tetravalent</td>
</tr>
<tr>
<td>Live attenuated, recombinant mutations, DEN/DEN chimeric</td>
<td>NIH</td>
<td>all DENV antigens (DENV2 prM/E)</td>
<td>Phase 1 tetravalent</td>
</tr>
<tr>
<td>Live attenuated, recombinant DEN/DEN chimeric</td>
<td>CDC/Inviragen</td>
<td>all DENV antigens (DENV1,3,4 prM/E)</td>
<td>Phase 1 tetravalent</td>
</tr>
<tr>
<td>DNA</td>
<td>NMRC/WRAIR</td>
<td>prM/E</td>
<td>Phase 1 monovalent</td>
</tr>
<tr>
<td>Recombinant subunit</td>
<td>Merck</td>
<td>80% of E</td>
<td>Phase 1 monovalent</td>
</tr>
</tbody>
</table>
Candidate vaccines in preclinical stage of development

<table>
<thead>
<tr>
<th>Approach</th>
<th>Developers</th>
<th>DENV antigens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rec. subunit</td>
<td>ICGEB, IPK, VaxInnate</td>
<td>EDIII</td>
</tr>
<tr>
<td>DNA</td>
<td>CDC, Inovio, Kobe University, NMRC</td>
<td>EDIII or prM/E</td>
</tr>
<tr>
<td>VLP</td>
<td>Cytos, ICGEB, Kobe University</td>
<td>EDIII or prM/E</td>
</tr>
<tr>
<td>Virus-vectored</td>
<td>GenPhar (AV), Themis (MV), UNC (VEE), UTMB (WNV)</td>
<td>EDIII or prM/E</td>
</tr>
<tr>
<td>PIV</td>
<td>GSK/WRAIR/Fiocruz</td>
<td>all DENV antigens</td>
</tr>
<tr>
<td>LAV</td>
<td>Fiocruz Mahidol University/Chiang Mai University/BioNet-Asia</td>
<td>prM/E all DENV antigens</td>
</tr>
</tbody>
</table>
Dengue vaccine candidate in advanced clinical development stage

- The Sanofi Pasteur’s tetravalent live attenuated candidate vaccine has advanced to Phase III clinical trial

- It is a YF-Dengue chimera based on the 17D Yellow Fever backbone wherein the prM and E genes are replaced by genes from each dengue serotypes and cultured on Vero cells and formulated as tetravalent ChimeriVax™ vaccine
Vaccine characteristics of ChimeriVax

- Live attenuated virus, tetravalent (4 vaccine strains cultured in serum free Vero cells)
- Injectable supplied as powder with solvent for suspension, dose 0.5 ml, to be administered Sub-cutaneous
- Recommended Schedule: 3 injections, 0 - 6 - 12 months
- Storage: +5°C
- Recommended for
 - Children aged 9 months & above (eventually),
 - Adults living in endemic areas, and those traveling to endemic areas
Dengue Phase I-III Clinical trials LatAm 2004-2014

- MEXICO: 7 trials
- PUERTO RICO: 4 trials
- BRAZIL: 3 trials
- COLOMBIA: 4 trials
- HONDURAS: 2 trials
- PERU: 2 trials
 - CYD24

Slide: courtesy Jean Lang
Dengue Phase I-III Clinical trials As Pac 2004-2014

- **Thailand**: 5 trials, CYD23
- **India**: 2 trials
- **Vietnam**: 4 trials
- **Philippines**: 6 trials
- **Singapore**: One large trial
- **Malaysia**: 3 trials
- **Australia**: 2 trials, CYD17
- **Indonesia**: 2 trials

Slide: courtesy Jean Lang
Ratchaburi, Thailand, 3 sub-cutaneous injections at 0-6-12 month, Sample size: Based on 70% efficacy, lower bound of 0% (TBC) and attack rate of 1.3%, 57 schools, 28 vaccination sites

- Primary endpoint
 - To assess the efficacy of dengue vaccine after three injections in preventing symptomatic, virologically* confirmed dengue cases, regardless of the severity, due to any of the four serotypes
- Third vaccination completed February 2011
- Estimate for efficacy results on 27 cases post dose 3: Q4 2012
- Subsets: immunogenicity n=300; viraemia n=100; reactogenicity n=1050
- Laboratory confirmation of dengue will be performed in all febrile illness that requires hospitalisation for 3 years after completion of vaccination

April 2011: IDMC no evidence to suggest a safety concern with the vaccine

<table>
<thead>
<tr>
<th>Population</th>
<th>Group 1 (Dengue Vaccine)</th>
<th>Group 2 (Control/placebo)</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children (4-11 yrs)</td>
<td>2668</td>
<td>1334</td>
<td>4002</td>
</tr>
</tbody>
</table>

Detection of Dengue cases: 12 months after the third injection

Slide courtesy Jean Lang

* According to WHO Guidelines for the evaluation of dengue vaccines in populations exposed to natural infection. TDR/IVR/DEN/01
Challenges to the use of the live attenuated dengue vaccine…1/

● Safety
 – Because of the theoretical risk of developing more severe disease upon subsequent infection by a wild type dengue virus, at least the early adopting countries will need a long term surveillance and risk assessment mechanisms in place
 – Is there any possibility of return to virulence?
 – Can the vaccine strains be transmitted to other people through mosquitoes?
 – AEFI
Phase II Representative Safety overview following the vaccination 2-11 years Latin American subjects (YFV >0)

Safety summary: % subjects reporting at least 1 reaction

- Similar safety profile after the first vaccination (TDV dose 1 versus placebo dose 1)
- Trend for a decrease of systemic reactogenicity after TDV doses 2 and 3
- Pneumo23 licensed vaccine more reactogenic than TDV dose 3

Slide: courtesy Jean Lang

World Health Organization
Challenges to the use of the live attenuated dengue vaccine…

• Affordability
 – Price is an important driver of uptake
 – Dengue is a disease most common in low to low-middle income countries. Ability of governments in these countries to fund a full dengue immunization programme may be challenging
 – However, low price of a vaccine does not guarantee rapid uptake
A low price does not necessarily guarantee rapid uptake of a vaccine

Number of countries that introduced HepB, 2009

Year of introduction can be the year of partial introduction

** Includes India and Sudan with partial introduction
excluding 3 countries where HepB administered for adolescents

Date of slide: 26 July 2010
Challenges to the use of the live attenuated dengue vaccine…3/

○ Achieving high coverage
 – Despite the billions spent in the last one decade on immunization, there are still more than 22 million children who do not even get the basic vaccines through routine programme
 – The longer the interval between doses, the higher the chances of greater drop-outs between doses
Interval between doses and Impact on coverage

Africa Region, 2009

South-East Asia Region, 2009

Source: WHO
Looking ahead- what WHO is doing to prepare countries for dengue vaccine introduction

● As part of the Dengue Vaccine Initiative Consortium, WHO is already working on the following:
 – Developing the policy process for dengue vaccine recommendations by SAGE
 – Dengue immunization and the impact of different strategies on the disease epidemiology
 – Dengue vaccine introduction guidelines
 – Update of written standards TRS 932, ready for submission to the Expert Committee on Biological Standardization (ECBS)
 – Framework for safety evaluation proposed in clinical evaluation guidelines
 – Supporting countries to strengthen their regulatory capacity
In Conclusion..

- Sanofi’s efforts are commended and exciting for the dengue world

- But to meet the global demand and to enhance access to affordable vaccines, we need several other vaccines/ vaccine manufacturers,

- Particularly vaccine manufacturers in developing countries are needed,
 - NIH vaccine candidate Licensed to developing country manufacturers for further development
 - Butantan (Brazil)
 - Biological E (India)
 - Panacea (India)
 - VaBiotech (Viet Nam)

- CDC (Inviragen) candidate in contract manufacturing agreement with Shantha Biotec but ???
THANK YOU
ChimeriVax™

Yellow fever 17D genome cloned as cDNA

5’ C prM E Nonstructural genes 3’

prM E prM E Exchange coat protein genes of dengue, JE, WN, etc.

5’ C Non-structural genes 3’

Chimeric cDNA → transcribe to RNA

5’ prM E Nonstructural genes 3’

Transfect mRNA Envelope is heterologous virus containing immunizing antigens

Grow virus in cell culture RNA replicative 'engine' is YF 17D

Courtesy of Tom Monath, Acambis